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Simple examples with features of renormalization
for turbulent transport
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Two simple exactly solvable models for turbulent transport are introduced and
discussed here with complete mathematical rigour. These models illustrate several
different facets of super-diffusion and renormalization for turbulent transport. The
first model involves time dependent velocity fields with suitable long-range
correlations and the complete renormalization theory is developed here in detail. In
addition rigorous examples are developed by using variants of this model where the
effective equation for the ensemble average at large scales and long times is diffusive
despite the fact that each realization exhibits catastrophic large-scale instability.
The second model introduced previously by the authors involves transport-diffusion
in simple shear layers with turbulent velocity statistics. The theories of renormalized
eddy diffusivity and higher-order statistics are surveyed here. An extreme limiting
case of the theory involving turbulent velocity statistics with long-range spatial
correlations but gaussian white noise in time is discussed in detail. Both the
renormalized theory of eddy diffusivity and exact explicit equations for second-order
correlations related to the pair distance function are developed in complete detail
here in this instructive limiting case.
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1. Introduction

The advection-diffusion of a passive scalar by an incompressible velocity is
described by the equation
oT/ot+ (v V)T = kAT, (1.1)

where the incompressible velocity field, v(z,t), satisfies divo =0 and « = 0 is the
diffusion coefficient. The problem in (1.1) is especially important and difficult when
the velocity field v involves a wide range of excited space and/or time scales and
admits a statistical description. Practical applications where these are the
circumstances include predicting temperature profiles in high Reynolds number
turbulence (Batchelor 1982), the tracking of pollutants in the atmosphere (Csanady
1973), and the diffusion of tracers in heterogeneous porous media (Dagan 1987).
Besides the practical interest in the equation from (1.1), the behaviour of solutions
of (1.1) with statistical velocity fields is an important prototype problem for
turbulence theories involving the Navier—Stokes equations (McComb 1990) since the
equation in (1.1) is statistically nonlinear even though this equation is linear for a
given realization. Thus the problem in (1.1) with velocity fields which are statistical
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with a wide range of scales has been attacked through a variety of physical space and
Fourier space renormalization theories which typically utilize partial summation of
divergent perturbation series according to various recipes (Kraichnan 1965, 1970,
1987: Roberts 1961 ; Forster et al. 1977; Rose 1977; Yakhot & Orszag 1986, 1988;
Koch & Brady 1989).

Statistical quantities of physical interest include the mean concentration, (7%,
and the second-order correlations, {T'(x,t) T(x’,t)> which are related directly to the
relative diffusion of pairs of particles (Lesieur 1990, ch. 8) as well as more complex
higher-order statistics involving the fractal dimension of level sets and/or interfaces.
One of the important practical problems pioneered by G. I. Taylor (1953) involves
developing effective approximate equations at large scales and long times for the
mean concentration, {7"); in the context of (1.1) these issues are also significant
prototype problems for theories of eddy diffusivity for the Navier—Stokes equations
(Kraichnan 1987; Yakhot & Orszag 1986). The solution of these problems has
practical implications for numerical simulation on the largest contemporary
supercomputers in disciplines such as atmospheric science because simplified effective
equations are needed to assess the effects of the continuum of energetic but
unresolved turbulent scales of motion on the larger scales without calculating these
effects explicitly. As pioneered by Richardson (Richardson 1926 ; Batchelor 1951) the
relative diffusion of particle pairs is crucial for estimating, for example, the size of
clouds of pollutants (Csanady 1973) or mixing processes in turbulent combustion
(Borghi 1988). All of these problems are especially difficult because velocity fields
with spectra such as the Kolmogoroff spectrum involve infrared divergences and no
separation of scales (Yakhot & Orszag 1986; McComb 1990) so conventional diffusion
theories can fail for these physically important cases.

Recently the authors have introduced a family of simple model problems with
turbulent velocity statistics where the above issues can be understood and clarified
in an unambiguous and mathematically rigorous fashion (Avellaneda & Majda
1990a, b, 1992a-d; Majda 1991). These simple models have an exactly solvable
renormalization theory for statistical behaviour at large scales and long times and
exhibit various ‘phase transitions’ from conventional diffusion theories with scale-
separated velocity statistics to more complex equations involving anomalous super-
diffusion as the velocity statistics vary to allow infrared divergences and long-range
correlation without separation of scales. The models are the special case of (1.1)
involving simple shear flows with turbulent velocity statistics. Thus, the model

blem has the f
problem nas the form T /0t +v(x,t) 0T /0y = k AT. (1.2)

The structure of the velocity statistics for (1.2) is summarized briefly in §3 below. The
complete theory for renormalized eddy diffusivity for (1.2) has been developed by the
authors (Avellaneda & Majda 1990a) and this rigorous theory in a simple model
provides an unambiguous test for the capability of renormalization group (rRNG)
methods and renormalized perturbation theory (rRpG) to produce good approxi-
mations to these exact results in regions with super-diffusion and infrared
divergences; such use of the model as a test problem for RNG and RPG methods has
been developed recently (Avellaneda & Majda 19925).

Also the authors have studied more subtle aspects of the models in (1.2) including
higher-order statistics such as the relative diffusion of pairs of particles, the sweeping
effect of large scales, and the fractal dimension of interfaces. Despite the simplicity
of the model in (1.2), the authors have demonstrated rigorously (Avellaneda & Majda

Phil. Trans. R. Soc. Lond. A (1994)
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1992a) that the model contains, in the vicinity of the Kolmogoroff value, a
remarkable amount of the qualitative behaviour of turbulent transport which has
been uncovered in recent experiments and proposed phenomenological theories
including the Richardson 4/3 law for pair dispersion and fractal dimensions of
turbulent interfaces in excellent agreement with recent experimental values. All of
these remarkable features of the simplified model problem have led the authors to
suggest with analytic supporting evidence (Avellaneda & Majda 1992¢) that similar
scaling behaviour occurs for turbulent transport diffusion by general isotropic
incompressible velocity fields in three dimensions with velocity spectra in the
vicinity of the Kolmogoroff spectrum. Other aspects of the simplified model
involving statistical universality and also general perturbations of (1.2) to slightly
stratified flow have been developed recently (Avellaneda & Majda 1992«, d) as well
as a different viewpoint for large scale, long time diffusion for (1.2) with steady
velocity fields with infrared divergences involving rigorous diagrammatic per-
turbation theory (Avellaneda & Majda 19905). It is worth mentioning here that the
models in (1.2) are a generalization to turbulent velocity statistics with infrared
divergence and no separated scales of the exactly solvable model illustrating
enhanced diffusion developed by Taylor (1953). However, the methods of exact
solution are quite different in these turbulent regimes and involve careful asymp-
totic evaluation of function-space integrals through the Feynman—Kac formula
(Avellaneda & Majda 1990a, 1992a).

Here we study several facets of super-diffusion and renormalization in turbulent
transport which can be illustrated in simplified model problems. In §2 we give a
complete treatment of super-diffusion and renormalization for a class of models of
(1.1) with the special form,

AT/3t+v(t)- VT = kAT, (1.3)

where v(t) is a random velocity field. Such simple model problems were introduced by
Kubo (1963) in a basic paper. When the correlations for v(¢) are sufficiently short
range the well-known Kubo theory is valid; however, if the velocity field exhibits
sufficiently long-range correlations, a ‘phase transition’ occurs together with super-
diffusion and a different structure for the effective diffusion equation for (7") at large
scales and long times. The examples in (1.3) are the simplest ones known to the
authors which exhibit this renormalized behaviour and a complete mathematical
treatment as well as other interesting facets of (1.3) and related equations are
presented in §2.

In §3 several aspects of the exact renormalization theory for (1.2) which have been
developed by the authors are discussed in general and illustrated in detail for a
special class of velocity statistics which are an extreme limiting case of those
considered in our earlier work; these velocity statistics involve gaussian white noise
decorrelation in time at all wave numbers but long range spatial correlations and
thus have the opposite character from the velocity statistics used for (1.3) in §2. We
give a self-contained treatment of the ‘phase diagram’ for (1.2) with these special
statistics as well as the theory of renormalized eddy diffusivity and explicit equations
for the pair-distance function {7'(x,y,t)7'(0,0,¢)) in this limiting case.

Phil. Trans. R. Soc. Lond. A (1994)
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2. Renormalization in the simplest model
Here we consider the statistical averaging of the model equation
oT/dt+o(t) VT = kAT, xeR? t>0,
T(x,0) = Ty(x).

(2.1)

The constant, & > 0, is the bare (molecular) diffusivity. We assume that v() = (v,(¢),
...,vg(t)) is a stationary mean-zero gaussian random field (Yaglom 1962) with
symmetric correlation matrix R(t) = (R;(t)) where

Ri(lt]) = vyt +T1) v)(7)). (2.2)

Here and elsewhere in this paper, {-) denotes the ensemble average over velocity
statistics. In this section, we assume for simplicity in exposition that the initial data,
T\(x), is a prescribed smooth deterministic function with a Fourier transform of
compact support.

For any given realization of the velocity field, the problem in (2.1) is readily solved
exactly through spatial Fourier transforms. With

fla) = J eixd f(£) dg (2.3)
RY

the solution of (2.1) for a given realization of the velocity field is given by

t

T(x,t) = Jez"i"'é e~ exp [ —27i J

0

v<s)~éds]7”a<£) dg. (2.4)

The only random function that occurs in (2.4) is

¢
exp [ — 2niJ v(s) & ds].
0
For velocity fields with gaussian statistics, we will use the following principle in
averaging (2.4) (Gelfand & Vilenkin 1964):
If »(t) is a mean-zero stationary gaussian process, then

<exp[——if v(s)fds]> = exp[—%( ;] && f f R(|s—s'])ds ds’)]. (2.5)
0 i, j=1 0J0

Below we also use the elementary identity,

¢ [t ¢
%J J R(ls—s)dsds” = j (t—s) Ry(ls]) ds. (2.6)
0J0 0
We remark that (2.5) can be proved in an elementary manner in the following
fashion: first, if the integral is replaced by a Riemann sum, (2.5) is an identity that
follows from the definition of gaussian statistics; then the dominated convergence
theorem can be applied to pass to the limit and obtain (2.5) under the assumption
that almost every realization is continuous; this assumption can then be removed by
further approximation. The formula in (2.5) is the main fact from probability theory
that we need for the remainder of this section.

Phil. Trans. R. Soc. Lond. A (1994)
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(a) Well-posed and ill-posed equations for the mean, (T

We consider the mean {77 (x,t), and ask whether there is a simple differential
equation always satisfied by this mean quantity. With (2.5) and (2.6) we average
(2.4) and obtain

2,2 a
Ty = Jem"‘fe““"g” exp(—4n2 Y & j ds) T\(£) dé. (2.7)
i, i=1
From (2.7) we observe that {7") satisfies the differential equation,

<’1’> =kAT) + Z Diy(t) <T> T = Tyl (2.8)

1,7=1
with j {vg(8) v;(0) > ds. (2.9)

[f the equation in (2.8) is to be useful in any practical sense, it should define a well-
posed problem for any starting time ¢, > 0. This requirement is needed to avoid, for
example, catastrophically amplifying round off error in a numerical approximation

0 (2.8). Since Dy(t) in (2.8) is a symmetric matrix, it is not difficult to verify the
following necessary and sufficient conditions for (2.8) to define a well-posed initial
value problem for any ¢, > 0:

The differential equation in (2.8) defines a well-posed problem
if and only if the symmetric matrix «d;;+D;;(t,) is non-negative

for any t, > 0, i.e. (2.10)

da
KIEF+ X Dy(ty) £,6,=>0 forall £eR®

7,j=1

For the special case of (2.1) with »(t) = (v,(t),0, ..., 0) the condition in (2.10) becomes

tﬂ
+J R(s)ds >0, £,=0 (2.11)

0

with R(s) = {v,(s)v,(0)>. Thus, if the velocity v,(f) has negative correlations over a
sufﬁmently w1de range of integration, then the differential equation in (2.8) for the
mean, {7, is an ill-posed problem. Next we present explicit examples of this
phenomenon.

The function R(t) = (o*+ ) e I cos ft is the correlation function of a stationary
gaussian random field for « > 0, # > 0 (Yaglom 1962, p. 71) and

fulf(s)ds = a+e % (—a cos ft,+ fsin fi,). (2.12)
0

By fixing « and o but choosing f to be large enough, it is clear that (2.11) will be
violated over several intervals in time centred about the points t} = (2nk—4r)/f for
k=1,...,1 s0 the averaged equation is ill-posed. More physical examples which can
Phil. Trans. R. Soc. Lond. A (1994)
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yield an ill-posed averaged equation arise by determining v(t) as the solution of the
damped and driven harmonic oscillator

d?v, (t) do,(t)
a TRy

where W(t) is stationary gaussian white-noise so that {W(t), W(¢')) = 6(t—¢t')dt. In
this example the correlation function is given by (Yaglom 1962, pp. 74, 75)

R(t) = (A/20w?) e~ 2™ (cos (21ft) + (o) B) sin 2nf]t]), (2.14)
where f? = w?—a?> 0 and we have assumed that ©® > a? With the similarity
between the formula in (2.14) and the formula for R(¢) used in (2.12), it should be
clear to the reader that the equation for {7") is ill-posed for a fixed « with the velocity

determined by (2.13) provided the oscillation frequency w is much larger than the
damping rate o in the same fashion as we discussed for the earlier example.

ot (t) = AW(), (2.13)

(b) Coarse graining and Kubo’s diffusivity

Kubo used the model in (2.1) with x = 0 in his pioneering paper (Kubo 1963) to
illustrate, among other results, the fact that the effect of randomness on the mean is
always enhanced diffusion provided the problem is viewed at large scales and long
times, i.e. coarse grained, and the correlation functions R;(f) decay sufficiently
rapidly. Thus, the somewhat surprising effects of randomness in creating ill-posed
problems described in §2a all disappear and the problem becomes well-posed with
enhanced diffusion after suitable coarse graining. Here in a straightforward fashion
we give precise necessary and sufficient conditions in the model for Kubo’s theory to
apply.

We consider the problem in (2.1) with the large scale initial data,

T, 0) = T)(dx), o<1 (2.15)
and introduce the large-scale variables with diffusive scaling given by
¥ =ox, t =J5%. (2.16)

The coarse-grained mean, T(x’,t’) is defined by

- x
T(a/,t') = lim <7’8<—,—)> (2.17)
8->0 8 82

with 7%(x,t) given by the solution of (2.1) with the initial data in (2.15). Using
(2.4)—(2.6) and dropping the primes in (2.17) we calculate that

t i 2 2
g z _ — 2mix & n—4nk|gt

t/o* t/0? R
X exp (—4752 [ 2 EE (tf R;(3) ds—6‘2f SRy (s) ds)]) TyE)dg.  (2.18)

ik 0 0
Two conditions are needed for (2.18) to have a limit as 6 -0 and both requirements
involve sufficient decay of the correlation functions R, (t) as ¢ 700; these two
conditions are

0 T
f Ry(s)ds < oo and lim (%j s[ijk(s)ds) =0. (2.19)

0 T 0

Phil. Trans. R. Soc. Lond. A (1994)
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With (2.18) and (2.19) it is clear that the large-scale long-time limit of the mean,
T(x,t) = limy_, {T%(x/d,t/8%)), exists and satisfies the equation,

oT I T -

—_—= /]’ D* ,/17 = ,/1 .

o kA +MZ=1 oo, (x,0) = Ty(x), (2.20)
with D} = %J_ R(s)ds. (2.21)

We claim that the coarse-grained problem in (2.20) is always well-posed with
enhanced diffusion due to the randomness because

a
Y DEEE =0 forall teRY, (2.22)

)
2, j=1

From the Bochner—Khinchin theorem (Yaglom 1962, p. 47), the Fourier transform
of a correlation matrix is a positive semi-definite measure and [i R,;;(s)ds is simply
the Lebesgue density of this measure at the origin so that (2.22) is satisfied
automatically. The two examples discussed in (2.12)—(2.14) from §2a clearly satisfy
the requirements in (2.19) and generate enhanced diffusion at large scales and long
times even though the averaged equations are ill-posed without the coarse graining
procedure.

There is a large literature which generalizes the Kubo theory to nonlinear random
transport operators under suitable and more stringent conditions on decay of the
correlation functions beyond those in (2.19) and results in elegant nonlinear versions
of the central limit theorem (Khas’'minskii 1966, 1980 ; Papanicolaou & Kohler 1974).

(i) Remark

If general initial data 7}(z) is utilized rather than large scale initial data and the
coarse graining procedure from (2.16) and (2.18), (2.19) is repeated, the scaled mean
T(x,t) = limy 0~ 4T%(x/0,t/8%)) exists and satisfies the same equation in (2.20) with
the initial data, 7'(x,t)|,., = C,d(x) provided that C, = [T dx # 0. The solution is
simply a multiple of the Green’s function for (2.20). If ), =0 but other higher
moments of 7}, are non-zero, then similar arguments apply.

(¢) Renormalization and super-diffusion with long-range correlations

We begin by introducing a family of gaussian velocity statistics depending on a
parameter ¢. As the parameter ¢ increases longer-range correlations in the velocity
statistics build up in time. The reason why we do this involves the analogy with
Wilson’s theory of critical phenomena in statistical physics (Ma 1976); in that work
the role of ¢ was played by the parameter 4 —d with d the space dimension and for
dimensions d > 4 (simple) mean field theory applies while for dimensions d < 4 new
anomalous scaling phenomena occur. The use of spectral parameters which vary
while the dimension d is kept fixed to generate analogues of Wilson’s theory for
Navier-Stokes turbulence at large scales and long times is one of the main
approaches in renormalization theory (Forster el al. 1977), and often involves
perturbation expansions in ¢ (Yakhot & Orszag 1986). Such parametrized families of
velocity statistics have been used by the authors in the renormalization theory for
the model shear layer problem from (1.2) (Avellaneda & Majda 1990a, 1992a, b;
Majda 1991) and will be described briefly below in §3. In the renormalization theory

Phil. Trans. R. Soc. Lond. A (1994)
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for the simple model discussed here in §2, the analogue of mean field theory from
critical phenomena (Ma 1976) is the simple Kubo theory described in §2b; we
parametrize the velocity statistics so that the mean field theory occurs in the model
from (2.1) with ¢ < 0 while anomalous phenomena requiring renormalization occur
for ¢ > 0.

With the above discussion as motivation, we consider gaussian velocity statistics
with a power spectrum given by

|o|"p(|w]) for —o0 <e<1, (2.23)

where ¢, (s) is a smooth rapidly decreasing even function of s with ¢, identically one
in a neighbourhood of the origin and ¢, (s) = 0. We choose R;; to be a fixed non-zero
positive symmetric matrix so that

da
% R;EE=0. (2.24)
j=

With the restrictions, —oo <e<1, it follows from (2.23), (2.24) and the
Bochner—Khinchin theorem that a stationary mean zero gaussian random field v%(f)
exists with velocity correlations Rf;(t) = {vi(t+7)vi(7)) given by

Rift) = By [53ol 5, do 2.25)
for — o0 < e < 1. The following elementary proposition gives the large time behaviour

of the correlation functions in (2.25) as a function of the parameter ¢.

Proposition 1. The correlation functions in (2.25) are smooth functions of t with the
Sfollowing behaviour:

(@)

R ()] < G+t (2.26)
(b) for 0 <e <1 and |t| > 1, the correlation functions have the asymptotic expansion
R (t) = Ry A |71+ Ee(t) (2.27)
with A, = (2r) sin (3en) I'(—e+ 1) and E*(t) satisfying
B0 < Cp(L+1)™Y (2.28)

Jor any N > 0.

We omit the straightforward proof of this elementary proposition which utilizes
scaling and the method of stationary phase in its simplest form.
We consider the large-scale long-time behaviour of the mean statistics for the
model problem
OTJat+v(t)- V¥ = k AT
1%, = Ty(dx), 0 <1

as ¢ varies for —oo < e < 1. First, for ¢ < 0 (2.26) guarantees that the conditions in
(2.19) for the Kubo theory §2b are satisfied so that with the simple diffusion scaling
in (2.16) the averaged equation for the coarse-grained limit is given by (2.20); in fact,
it is a simple matter to calculate from (2.23) that the enhanced diffusion, D},
vanishes for ¢ < 0.

Fore > 0, the asymptotic behaviour of the correlation function in (2.27) guarantees
that the correlations decay slowly so the integrals in (2.19) diverge and the simple

(2.29)

Phil. Trans. R. Soc. Lond. A (1994)
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Kubo theory from §25 is no longer valid. Thus the problem needs to be renormalized
on a different timescale. We introduce the new large-scale long-time scaling functions

¥ =8z, t =p*d)t (2.30)

and attempt to choose p(d) to renormalize this divergence. Dropping the primes in
(2.30) and by following (2.6) and the same procedure from §2b6 we calculate that

X l i - 2042/ 2
T — 121[x'¢'/]7 —4n*(8%/p®) kt
<<Nﬁ@» J}e e

82 t/p* t/p*
X exp ( —4mr? [Z & & <_2tj R (s)ds— 6‘2J sR(s) ds)]) dg. (2.31)
ik P"Jo 0
We use the asymptotic expansion from (2.27) and (2.28) and compute that
52 t/p? ) t/p? : 52 A(‘t1+c _ 52 ..
[?tjo R;k(g) dt9_82J0 8}{;5/6(8) ds =WJ6+—1)R]/C+O<E> (232)
We introduce the limiting coarse-grained mean
— x ¢
T(x,t) = lim <’]"‘ <~,——)> 2.33
IR CRE) &5

and require that 7" has non-trivial dynamical behaviour, i.e. T is neither identically
zero nor merely the initial data 7j(x). With (2.31) and (2.32), we see that such non-
trivial limiting behaviour occurs for a unique choice of the scaling function p(d)
determined by (2.32), i.e.

p(8) =Mt g <e<1 (2.34)

and with this choice §2/p® — 0 so the bare diffusivity « is irrelevant in this régime and

. . N - A 1+e
Tla,t) = j dezmx-é T(&) exp<—4n2[2 £ &, Rjk?eci-—li]) dé. (2.35)
R jok

Thus, the large-scale long-time renormalized equation for the mean is given by

M ey OT
C = A SRy
a0 =€ Al B g o

Tlpey = Ty(2) (2.36)
for0<e< 1.

We emphasize here that the simple renormalization theory in (2.35) and (2.36)
involves super-diffusion. First, the scaling exponent p(8) = §70 for 0 <e <1
involves shorter renormalized times in (2.30) than the standard diffusive timescales
for the Kubo theory from (2.16) where p(d) = 8. Furthermore, on these shorter
renormalized timescales particles spread more rapidly. From (2.36) we compute that
the second moments of 7" in time are given by

- ~ A
(ij Xy, ’I’) (t) = 2R, —e—_ie—Qt”‘ff’I])(x) dx+ij xy, Th(x) da. (2.37)
Thus, with 7(x) = () particles spread at the super-diffusive rate,
_ _ A
f|5c|2 T(t) = 2(X Ry;) — 5t (2.38)
7 €—e
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214 M. Avellaneda and A. J. Majda

for 0 <e <1 in contrast to the standard spreading [|z[*7 ~ Dt associated with
conventional diffusion in the mean field régime from §26 and described by (2.20).
To pursue the analogy with critical phenomena in this simple model, we see that
a ‘phase transition’ occurs from normal diffusion to super-diffusion as e crosses
through zero with different effective equations at large scales and long times.
Furthermore, the exponent of the time rescaling function p(d) from (2.34) plays the
role of an order parameter characterizing this ‘phase transition’ since with f(e) =
log (p(3))/ log (9)
[ 1 € <0,

(2.39)
11/(14—6) O0<e<t,

(¢) =

and the graph of f(€) reveals the classical behaviour of an order parameter in a first-
order phase transition (Ma 1976). The determination of this large-scale rescaling
function p(d) as ‘phase transitions’ occur is one of the goals of renormalized theories
for eddy diffusivity (Yakhot & Orszag 1986; Avellaneda & Majda 1990, 19920).
Another facet of the renormalization theory just presented is that the effective
renormalized equation in (2.36) is invariant under the space-time symmetry group
associated with (2.30), i.e. solutions of (2.36) are invariant under the transformations

(2, 1) > (Ax, A A+9p) (2.40)
for any A > 0.

(d) The stabilizing effect of randomness on liiryec ~cale instability

The Kuramoto—Sivashinski equation is linearly unstable at large scales with
nonlinear energy transfer. By using renormalization group ideas (Forster et al. 1977),
Yakhot predicted that the intrinsic randomness in solutions of these equations would
result in a stabilized effective equation, the viscous Burgers equation, with a random
force as the large-scale long-time effective equation for the overall dynamics (Yakhot
1981). This intriguing prediction of Yakhot was confirmed through careful numerical
simulation by Zaleski who also gave a detailed numerical study of higher-order
statistics (Zaleski 1989). Thus the intrinsic randomness in this nonlinear equation
overcomes the large-scale instability for large times and is replaced by a stable
effective equation with random forcing. Here we utilize the techniques developed
earlier in §2a—c to provide extremely simple examples of linear equations with large-
scale instability where the effect of randomness does not curtail the growth of
instabilities for individual realizations but nevertheless the large-scale long-time
effective equation for the ensemble average satisfies a well-posed effective equation.
Thus the examples presented below are simplified ‘cartoon’ models for some aspects
of the behaviour observed in much more complex nonlinear systems.

We begin our discussion by considering the linearized Kuramoto—Sivashinski
equation with large-scale initial data, i.e.

or° RV R A
= —_—————
ot ox* O’

’/"’\(%,t)b:o = II’((?.’L"), d< 1. (2.41)

Here k > 0 is a constant ; the equation (2.41) has a band of large-scale unstable wave
numbers but is stable for short wavelengths. To study (2.41) at large scales and long
times we introduce the scaling

¥ =0x, ' =pt (2.42)
Phil. Trans. R. Soe. Lond. A (1994)
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Examples for turbulent transport 215

and after dropping the primes in (2.42), we obtain the rescaled equation

o U RO/ B LY A

T F0) "t 0) oxt

T8, = T)(x). (2.43)

It is easy to check that as 6| 0 there is a unique scaling with a non-trivial limiting
behaviour, namely p(8) =, and the large-scale long-time limit equation is the
catastrophically unstable backward heat equation,

AT/ot = —k*T/0x2, T,y = Ty(x). (2.44)

This result is a manifestation of the large-scale instability mentioned earlier. It is
worth remarking here that at the beginning of §2, we made the standing assumption
that 7{(x) has a Fourier transform of compact support; such a condition on the initial
data is needed to justify the limiting procedure from (2.43) and (2.44) and also to
guarantee that the ill-posed equation in (2.44) has a solution with the given initial
data for all time. Thus, this requirement is important for the remainder of this
section.
With (2.41)—(2.44) as background, we consider the model problem

aTa + v(t) aT& _ Ka2Ta _ a4/116
ot or ~  0a b’

oy = Ty(02),8 < 1, (2.45)

where v(f) satisfies the assumptions in (2.19) for the validity of the Kubo theory
developed earlier in §25b. Clearly the effect of the random convection term in (2.45)
is merely to introduce phase shifts so the problem in (2.45) exhibits large-scale
instability for each given realization. However, if we consider the limit of the
ensemble average at large scales and long times

al — 1 wfi
Tt = tim (7359

then computations as we developed in §2b involving Fourier transforms can be
repeated and the effective equation for 7' is given by
oT 2T 2T
= D¥——
o - e
with D* = 0 given by D* = %f_ww {v(s)v(0)) ds. Clearly for any velocity statistics with
D* > k, the effective equation in (2.46) for the ensemble average, 7', at large scales
and long times is stable and any randomness at all has a tendency to make the
averaged problem more stable.
Other examples with a similar flavour but with more interesting effective
equations for 7' can be developed for the model equations
arp& aflw 0 1+y a4T6

A € — _ 18
ot +o(f) o N|ox oxt’

T|t=0 = Ti(x) (2.46)

1% = Ty(dz), <1, (2.47)

where v(t) is a stationary mean zero gaussian random field with long range
correlations which satisfy the assumptions in (2.25) from §2¢ for 0 < ¢ < 1. Here the
operator [0/0z**” is defined through the Fourier transform,

PMFF%WWM

Phil. Trans. R. Soc. Lond. A (1994)
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0 1+y . "
via Wl = J ¥ S 2mg| 1 f(£) dE (2.48)

and we assume that y satisfies 0 <y < 1.
First we briefly consider the deterministic problem
or_
a

0

1+y a4716
a —

o
r ox*’

T,y = Ty(0%) (2.49)

in the large scale limit. With the space-time scalings from (2.42) we obtain the
rescaled problem

aTa 6l+y
= K-

ot (p(3))*

There is a unique choice of g(d) so that the large-scale limit equation is non-trivial;

this choice is given by p(8) = 0*7/2 with the corresponding large-scale limit equation
given by

1+y 34 a4/118
PG e Teo= 5. (2.50)

0

ox

1+y

o
T, Ty = Tyle). (2.51)

ot

0

| Ox

The equation in (2.51) is catastrophically unstable at all wave numbers like the
backward heat equation (2.44); furthermore, the random shift from (2.47) does not
effect the magnitude of the growth rate of this instability for a given realization.
We return to the problem in (2.47) and calculate the effective equation for the
ensemble average 7 at large scales and long times. Clearly the most interesting
régime occur when ¢ and y are chosen so that the effects of randomness and large
scale instability occur on the same renormalized timescales, otherwise, one or the
other effect completely dominates. Equating the time scalings §(d) above (2.51) and
p(0) in (2.34) from §2¢, we compute that this condition will be satisfied provided that

1+y=2/(1+¢), for 0<e<]1. (2.52)
With p(8) = 6479 and the relation in (2.52), we define 7' by

Iial . T E t
e = 1§$<’ 6(6’p?<6>)>

and repeat the analysis from §2¢ with minor modifications to obtain that the
effective equation for the ensemble average in the large-scale long-time limit is given

by

a Fi_cr_w 1 627_7 lral m
a' 1 +A€t67()‘*x3, 1|t=0 = [0(‘%') (253)

o _
ot

K

with A, = A, R/e. The equation in (2.53) exhibits several interesting properties; this
equation is well-posed but has an infinite band of unstable modes at ¢t = 0 and a finite
band of unstable modes for any ¢ > 0 that narrows with time and vanishes in the
limit as t—oco. Clearly the constructions and analysis presented here can be
generalized to a large class of constant coefficient equations with suitable random
coefficients.

Phil. Trans. R. Soc. Lond. A (1994)
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Examples for turbulent transport 217

3. Renormalization in the shear layer models

Here we discuss the renormalization theory for the simple models:

T
%7_}_ v(x, t)%—y— =k AT, T, =T)(x), (3.1)
where v(x,t) is endowed with suitable turbulent velocity statistics (Avellaneda &
Majda 1990a, 1992a). Below, we will discuss the rigorous theory for eddy diffusivity
and also the behaviour of higher-order statistics such as the pair distance function for
the simple models. Here we will give a new self-contained treatment of these issues for
an extreme limiting case of the turbulent velocity statistics involving white noise in
time but long-range spatial correlations; this limiting example will provide an

illustration of the techniques and ideas utilized in our work on the model (Avellaneda
& Majda 1990a, 1992a—d).

(@) The turbulent velocity statistics
(i) The Kolmogoroff spectrum

To motivate the families of turbulent velocity statistics utilized in the model, it
will be convenient to discuss the general problem of advection-diffusion in (1.1)
involving velocity fields with statistics consistent with the Kolmogoroff hypothesis
(McComb 1990; Lesieur 1990). With L, the integral length scale and V the typical
velocity of the energy containing scales involving non-universal fluid motions,
the Reynolds number is given by Re = VL,/v with v the viscosity of the fluid.
Turbulent fluid flows with Re 7 00 and properties of turbulent transport which are
valid for Re > 1 are the primary interest here. The Kolmogoroff hypothesis in d-space
dimensions (for d = 3) asserts that there is a well-defined dissipation length scale L,
so that as Re 7 co, the velocity spectrum has the universal form given by

b(k)|2y = O,y &kt~ (3.2)

for wave numbers £ in the range L;' < |k| < Lz'. Here € is the mean dissipation rate
and C, is a universal constant. The random energy spectrum is assumed to vanish for
|k| > L;* or decay very rapidly. The velocity is not universal and deterministic on
scales larger than L,. We neglect the non-universal mean flow and continue the
discussion.

We non-dimensionalize (1.1) by utilizing the dissipation length scale L, = (v2/e)t
and the dissipation time scale, t; = (v/€)?. Using the relation & & V3/L,, in a familiar
fashion we obtain that

Ly = (Re) 5Ly, ty = (Re)*E, (3.3)

where §=L,/V is the large-scale eddy turnover time. With this non-dimen-
sionalization and the identification & = (Re)™4, the advection-diffusion equation from
(1.1) assumes the form

oT/ot+vy VT = RAT, (3.4)

where & = (Pr)™! with Pr = v/k, the Prandtl number. In (3.4) the rescaled velocity
field, vy(x) has the energy spectrum

[Colkl=273, & < |k < 1,

0, otherwise.

CIB(k)*> = (3.5)

Phil. Trans. R. Soc. Lond. A (1994)
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218 M. Avellaneda and A. J. Majda

The above calculations assume a steady velocity field. For a time-dependent
incompressible velocity field v(x,t) satisfying the Kolmogoroff assumptions and the
same non-dimensionalizations used earlier we obtain (3.4) with the rescaled energy-
power spectrum

[Colkl (k|5 (/K1) & < k] < 1,

I35k, w)*> = 1 (3.6)

, otherwise,

and ~ denotes the space-time Fourier transform. Here ¢ > 0 is a structure function
with the normalization [ ¢(s)ds = 1. We remark that the combination w/|kff arises as
the only combination of frequency and wave number independent of Re and
simultaneously consistent with the scaling in (3.3) and the energy spectrum in (3.5).
Thus, the basic problem of turbulent transport by velocity fields with Kolmogoroff
statistics and no mean flow can be reformulated as (3.4) where v,(x, t) has the energy-
power spectrum in (3.6).

In theories for eddy diffusivity, the initial data varies on the integral scale, L,, and
with the above non-dimensionalization has the form

Ty = Ty(0x), 8 <1. (3.7)

The goals of a theory of eddy diffusivity for fully developed turbulence is to assess
the effect of the motion of the arbitrarily many smaller length scales on the dynamics
for 7' without resolving the effects of the small scales in detail. Here are the first goals
of an eddy diffusivity theory for (3.4) with an energy spectrum such as given in (3.5)
or (3.6):

(i) Compute an effective time rescaling function, p?(d), so that the rescaling

ensemble average
_ 14
T(w, ) = lim 7’6(5, >> 3.8
w0 = {5 5

has a non-trivial limit. For turbulent transport with the velocity statistics in (3.5) or
(3.6), p%(d) should equal or exceed &, the large-scale eddy turnover time. Since 8 =
(Re)73, the limit in (3.8) corresponds to the high Reynolds number limit.

(ii) Compute the effective equation satisfied by T'(x, t); this is the ‘eddy diffusivity’
equation because only large-scale fluctuations are involved in this equation.

Why is the problem in (3.4) with velocity statistics in (3.5) or (3.6) difficult ? We
are interested in a uniformily valid theory as (Re) - oo and there are strong infrared
divergences in this limit for the velocity spectra in (3.5) and (3.6). This infrared
divergence implies that long-range correlations for the velocity field dominate the
dynamics in the high Reynolds number limit. For example, the steady velocity field
in (3.5) satisfies

i [ B

80 J RY |k|2

dk =400, (3.9)

while a mathematically rigorous necessary and sufficient condition (Avellaneda &
Majda 1989, 1991 ; Majda 1991, p. 371) for simple ‘mean field” diffusion theories with
p(8) = & to be valid for steady velocity fields is that

<k

re [kP?

dk < oo. (3.10)

Phil. Trans. R. Soc. Lond. A (1994)
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Examples for turbulent transport 219

The situation here for spatial correlations is analogous to that already developed
earlier in the simple model in §2b, ¢ for time correlations where sufficiently long range
correlations cause a ‘phase transition’ and completely different super-diffusive
behaviour in the large-scale long-time limit as a spectral parameter crosses from
e<0toe>0.

(ii) Velocity statistics in the model

For the model problem we embed the analogue of the Kolmogoroff spectrum in
(3.6) with d = 1 into a two-parameter family of turbulent velocity fields for (3.1)
depending on the parameters €,z. The parameter ¢ measures the rate of infrared
divergence in space according to the precise criterion in (3.10) while the parameter
z measures through |k|* the correlation length of velocity components with wave
number k, the Kolmogoroff spectrum in (3.6) has z = 2. We assume that the model
problem in (3.1) has been non-dimensionalized on dissipation length scales in a
fashion as desecribed in (3.3)—(3.6) for the Kolmogoroff spectrum and we identify « in
(3.1) with (Pr)™! where Pr is the Prandtl (or Schmidt) number.

We consider stationary mean-zero velocity fields for (3.1). The space-time
correlations for the velocity are given in general by the energy-power spectrum
through Fourier transform by

v +x, b+ )o@, 1)) = R(x, t) = ffez"i(’“*“") Ek, w)dkdw. (3.11)

As in (3.6) above, we assume that the velocity statistics for (3.1) have the form

Bk, w) = VAIk**(1k[7*p(w/|k[F) ro(lkl/0) oo (1K), (3.12)

with €,z satisfying —o0 <e<4 and 0 <z< 400 (the limit z =400 for (3.12)
corresponds to steady velocity fields). We assume that ¢ > 0 is a structure function
with [ ¢ = 1. With non-dimensionalization for (3.1) analogous to those in (3.3) for the
Kolmogoroff spectrum, i, (|k|) represents the behaviour of the velocity on the
dissipation scales while ir(|k|/d) is an infrared cut-off at the integral scale L, = 87!
expressing the fact that the velocity field is deterministic and not statistically
universal for these larger length scales; we assume that (k) > 0 is rapidly
decreasing for large &k with ¢ (0)=1 and that (|k]) >0 vanishes in a
neighbourhood of zero. Particular examples satisfying these conditions and
motivated by (3.5) and (3.6) are

1, k> 1, 1, k<1,
i ={g 10 and o=y ST 3.13)

Clearly the analogue in the model of the Kolmogoroff spectrum is given by the values
¢ =% and z = £ with the cut-offs in (3.13).
With (3.11) and (3.12) we have the formula

ot 010,009 = 7 [ s up-ep () i siari—enar. e

where f(t) is the Fourier transform of the structure function ¢(w). In our earlier work
(Avellaneda & Majda 1990a, 1992a), the special choice, ¢(w) = a 'n~ (1 +w?/a?)™,
was utilized for calculational simplicity with the corresponding f given by

f(t) = e~2m, (3.15)
Phil. Trans. R. Soc. Lond. A (1994)
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It should be mentioned here that the large-scale theory for eddy diffusivity and
higher-order statistics in that work remains valid for a much wider class of
structure functions, ¢(w). To understand the role of the parameters, €,z, in a more
intuitive fashion we utilize (3.14). From this formula we see that the spatial
correlations of the velocity at fixed time for |[x—a’| > 1 are given by

{v(z, t) (2, b)) ~ const. X |x —a’| 72t (3.16)

in the limit as § >0 so that larger values of € correspond to longer range spatial
correlations in the velocity field. In particular, we have chosen € in (3.14) so that the
correlation functions at fixed time satisfy (3.10) for all values z provided that ¢ < 0;
thus, the spatial correlations of the velocity field decay sufficiently rapidly so that
(3.10) is satisfied and simple diffusion (mean field) theories occur. As regards the
parameter z, we see from (3.14) with the special choice in (3.15) for f(t) that the
decorrelation in time of the velocity field components at wave number k for each &
is governed by the k-dependent turnover time

To(k) = 1/alkl.

This turnover time is longer for smaller values of || and incorporates the feature that
long wavelength components have longer turnover times. Thus with |k| <€ 1, in the
limit as z— 00, the correlation time becomes infinite at all long wavelengths and we
recover steady velocity fields with spatial correlations behaving as in (3.16). In the
other extreme limiting case with z = 0, all modes have identical correlation times
regardless of wavelength. Clearly velocity fields with the analogue of the Kolmogoroff
spectrum in the model with € =§ and z = § exhibit strong infrared divergence in
space and relative decorrelation in time of different large-scale modes which is
intermediate between these two extreme cases.

In this paper we will use the limiting case of velocity statistics which are gaussian
with gaussian white noise in time and satisfy (3.14) as € varies. Thus in this extreme
limiting case, we have

e ote 19y = o= [, () g @an

)
where d(¢) is the Dirac delta measure. We remark that the stationary gaussian
velocity field in (3.17) can be derived from a gaussian velocity field with correlations
in (3.14) with z = 0 and the special structure function in (3.15) with V* normalized
by V? = 4naV? in the limit as the parameter a 7 co. Thus, the examples of gaussian
velocity fields with the correlations in (3.17) correspond to parameters of the velocity
statistics in (3.14) with z = 0 and € varying. According to (3.16) these velocity fields
exhibit longer-range spatial correlations as the parameter ¢ increases with complete
decorrelation in time for velocities at all wave numbers.

(b) Theory for eddy diffusivity in the model

In this section, we describe the theory of renormalized eddy diffusivity for the
model in (3.1) with velocities having the turbulent statistics with correlations
described by (3.12) or (3.14) as the parameters € and z vary. Thus we consider (3.1)
with these statistics and the large-scale initial data

Tli—g = Ty(dz,dy), d<1 (3.18)
Phil. Trans. R. Soc. Lond. A (1994)
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N

Kolmogoroff Spectrum

“e J €=2 €=4

y
z

Figure 1. The ‘phase diagram’ for the five regions in the (€,z) upper half-plane with different
behaviour for the rigorous renormalization theory.

and develop the theory of eddy diffusivity following the objectives mentioned in
(3.8). Thus, as in §2, we determine unique large-time rescaling functions

x =8, y =0dy, t =p*t (3.19)

so that with T'(z, y,t) the solution of (3.1) with the large-scale initial data in (3.18),
the ‘high Reynolds number’ rescaled limit, 7', defined by

— oyt

1wty =tim (7[5 505)) (3:20)
is non-trivial and T(x,y,t) satisfies an effective equation; this is the equation for
‘eddy diffusivity ’ since the effect of all the small scales for the velocity field has been
replaced by a different effective equation for the ensemble average involving only the
large scales. As in §25 (i), the limiting ensemble average for more general initial data
than (3.18) can be studied with easy modifications.

The rigorous renormalization theory for the exactly solvable model involves five
distinct regions with different scaling laws and a different structure for the effective
equations as the boundaries between these regions are crossed (Avellaneda & Majda
1990a, 1992a). As in the simpler case described in §2¢, the exponent of p(d) serves as
an order parameter in describing the ‘phase transitions’ across the boundaries of
these five regions; such transitions are described by the ‘phase diagram’ depicted in
figure 1. This phase diagram involves five regions with different anomalous scaling
exponents and cross-overs between diffusive, super-diffusive, and super-ballistic

Phil. Trans. R. Soc. Lond. A (1994)
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Table 1. The exact renormalization theory for eddy diffusivity
region scaling function effective equation
1 p(d) =4 T,=«xAT+D,T,,

AO
D, = 2U2J (2malkl + 4mklkf2) ke Al
0

1 pl) = da-rs 1 =Dy,

Dy = (na)(e+2—2)"1U*
11 p(d) = o1-ent 7, =Dy, T,

Dy = 2(6—2) 1 I®
v p(d) = diler- T = previEp T

D,y = (2na)c 272202

:— 2\ [ 1 — ¢
x(2+F )J |k|1‘“{1— ¢ ]dlc
z )Jo |KI?
A% p(0) = SV non-local (Avellaneda & Majda 1990a)
Kolmogoroff boundary  p(d) = §4-2/2 T,=Dwt)T,,

D() = (U*/ma) r IR (L e dk

1

scaling régimes with corresponding remarkable changes in the nature of the effective
equations for the eddy diffusivity. The structure of the effective equations for 7' for
the five regions is presented in table 1 for the explicit cut-offs in (3.13) and the time
structure function in (3.15). It is very interesting that the analogue of the
Kolmogoroff spectrum with the values ¢ = §, z = 2 in the simplified model occurs at
a ‘phase transition’ boundary between two regions with a different renormalization
theory for eddy diffusivity (Avellaneda & Majda 1990a). We remark that for this
Kolmogoroff value, p(8) = 0%, corresponding to the large-scale eddy turnover time in
(3.3). The effective equation at this Kolmogoroff boundary is also given in table 1.
The significance of this boundary point for the renormalized large-scale higher-order
statistics such as the pair distance function and the fractal dimension of interfaces
is discussed and developed in detail in recent work (Avellaneda & Majda 1992a); the
nature of the different effective equations in the phase diagram as well as the
sweeping effects of constant mean large-scale motions are also developed in that
reference. Below we describe the theory for eddy diffusivity in detail for two
instructive limiting cases.

(i) Turbulent shear velocities and Kac’s formula

Why can we develop an exact renormalization theory in the simplified model ? If
we take the partial Fourier transform with respect to y,

T(x,t,£) = fe‘z’“y‘é T(x,y,t)dy,

solutions of the model equation in (3.1) satisfy the transformed equation
oT /ot + (2mitw(x, t) — kdm2E) T = kT, (3.21)

with appropriate initial data from either (3.1) or (3.18) which we omit here. When
k = 0, the equation in (3.21) involves decoupled but strongly correlated oscillators
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Examples for turbulent transport 223

with suitable long-range correlations in x and decorrelation in time described by the
parameters ¢ and z. The key idea of the authors in their analysis (Avellaneda & Majda
1990a, 1992a) is to represent solutions of the non-self-adjoint problem in (3.21) with
k # 0 through Kac’s version of the celebrated Feynman-Kac formula (Kac 1950
McKean 1969) as a function space integral and then to do appropriate rigorous
asymptotics on this function space integral. We will illustrate these ideas below in
the renormalization theory for (3.1) with the velocity statistics in (3.17).

(ii) Renormalization with steady velocities for 0 <e < 2

The special case of steady velocity fields for (3.1) with long-range correlations is an
important simplified model for anomalous diffusion in layered porous media (Dagan
1987). The velocity correlations in this case are given by (3.14) with f = 1. The large-
scale long-time renormalization theory for (3.1) with steady velocity fields is given by
figure 1 and table 1 in the limit as z 7 00 ; thus, as in §2¢ there is a ‘phase transition’
from standard diffusion theory for ¢ < 0 to super-diffusion for 0 < ¢ < 2. The mean
square displacements in this régime were calculated as examples to illustrate super-
diffusion in porous media in pioneering work (Matheron & de Marsily 1980); the
large-scale long-time renormalized Green’s function for (3.1) in this régime was
calculated for the first time by the authors (Avellaneda & Majda 1990a) by utilizing
Kac’s formula following the strategy summarized in §36(i). This example displays
remarkable effects of diffusion, i.e. k # 0, after renormalization even though the
overall large-scale long-time behaviour is super-diffusive. We discuss this briefly
here.

For steady velocity fields and ¢ with 0 < ¢ < 2, the renormalized scaling function
from (3.19) is given by

p(8) = §v/a+e2), (3.22)

With this scaling law, we might guess naively that the effective equation for 7 is a
simple local diffusion equation,

oT/ot = ta9T,,, (3.23)
where 2 depends on «, i.e.
P = ki (3.24)

and o has some prescribed value, &(¢). The reasoning for this naive guess is the
following: (1) solutions of (3.23) remain invariant under the space-time symmetry
group associated with the scaling law in (3.22) as described earlier in (2.38); both the
explicit dependence on ¢ in (3.23) and the dependence on the bare diffusivity, «, in
(3.24) match the limiting behaviour at ¢ = 0,2 from the mean field régime for ¢ < 0
and the super-ballistic reglme for e > 2.

Nevertheless, this naive guess is completely wrong! Let K(y,¢,a) denote the
explicit Green’s function for (3.23) for a fixed value of a. This Green’s function has
the explicit kernel

K(y,t,a) = (4m) 3 4(Da)Fexp{ —|y|? /4Dt /2. (3.25)

Then, for each value of ¢ with 0 < ¢ < 2 there is a broad band distribution function
of diffusivities v () so that the Green’s function for the effective equation is given by

Ke(y,t) = fooK(y,t,oc)dve(oc) (3.26)
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with the large-scale long-time renormalized mean, 7', from (3.20) given by

T(x,y,1) = fKe(?/—yN, 1) To(x, §) dg. (3.27)

In particular, since dvg(a) is not a point mass, the Green’s function from (3.26) does
not have a gaussian profile for 0 < ¢ < 2. The formulas for the distribution function
v () for random diffusivity exhibit remarkable changes as the parameter, ¢, is varied
(Avellaneda & Majda 1990a).

With (3.27) the equation for eddy diffusivity satisfied by 7" is nonlocal and we can
follow the procedure developed by Tartar (1989) to find the structure of this
equation. However, unlike the homogenization theory for the steady inviscid shear
layers in Tartar’s work, these equations would involve a subtle dependence on the
bare diffusivity « as a consequence of the formula in (3.24). It is worth remarking
here that despite the special form of the Green’s function in (3.27), the same Green’s
function occurs with renormalization for a large class of non-gaussian velocity
statistics (Avellaneda & Majda 1992a). Furthermore, a Green’s function with the
same structure arises after renormalization when the simple steady shear layer for
0 <e <2 is perturbed by an arbitrary periodic incompressible two-dimensional
velocity field (Avellaneda & Majda 1992d).

(iii) Eddy diffusivity for transport-diffusion by shear velocities with gaussian white
noise in time

With the discussion from §3b (i), the exact solution of (3.1) with general initial data
can be represented for a given realization of the velocity statistics through Kac’s
formula as the function space integral

T(x,y,t) = fjexp [2mi(ay + y&)] exp [ — k4n?E%] dy d&

X Eﬂ{exp [27:177(2@% A(t) —2mig f tv(x+ (2K)% B(s), t—s) ds}} Ti(n,£). (3.28)
0

Here and below, f(s) is a brownian path with £(0) = 0 and /[ - | denotes the expected
value over such paths with respect to Wiener measure (McKean 1969). We calculate
that

Sxy ot
me»

- U<ﬁ> dn dE Ty(n, £) exp [ —x4n2(8*/p?) £1] E,,{exp [2mioy(26)486(t/p)]

X exp|:—(4n2/2)§282 f/p JHP R((2/<)%/)’(s)—ﬂ(s’),s—s’)dsds/]}, (3.29)

where R(z,t) is the velocity correlation function in (3.11). In the formula in (3.29) we
have utilized the large-scale initial data in (3.18), commuted the average [ -] with
(), and applied a similar identity for computing exponentials of gaussian random
fields as we used earlier in (2.5) from §2 (Avellaneda & Majda 1990a). The formulas
in (3.28) and (3.29) apply for general mean zero stationary gaussian random velocity
fields.
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Examples for turbulent transport 225

For the special limiting case of the random fields with gaussian white noise in time
and correlations given in (3.17) we compute that

1* (tle* L 1t
f J R((2k)2 (B(s)—p(s"), s —8") dsds” = -— R(0) (3.30)
o Jo 2p
with R0) = szn [l =44, (l—];—l) Vo (k) dk (3.31)

for —o0 < € < 4. We use the standard identity for brownian motion

B {fexp [2nin(26) 84(1/p*) ]} = exp [ — 4n2n*(82/p?) 1], (3.32)
Combining (3.29)—(3.32) for these special velocity statistics, we have

xy t
(r(-57)
= ffez"i(”“yg) exp[—/c4n2/i—z(§2+772) t—nzgznge(O) t] ﬂ(ﬁ, g)dndg.  (3.33)

There is different behaviour in the limit as §| 0 depending on whether R¢(0) from
(3.31) converges or diverges as 6 | 0. We observe from (3.31) that R¢(0) is absolutely
convergent for ¢ < 2 and divergent for ¢ > 2.

The inequalities — o0 < ¢ < 2 define the mean field régime for the theory for eddy
diffusivity with the velocity statistics in (3.17). In this régime as § >0,

Re(0) >R = 1722f B (k) dk < o0
0
as in §2b above, we have the normal diffusive scaling p(8) = § and with (3.33) the
effective equation satisfied by the large-scale long-time mean, 7', with these scalings
is given by
T/t = k AT+LR*T/oy?, T,y = To(x,y) (3.34)

with p(8) =0 (3.35)

for 0 <e < 2.
For 2 < ¢ <4, R¥0) diverges in the limit as § 0 and as in §2¢, a super-diffusive
scaling is needed to treat this divergence. We compute that

82 . 84_6 00 B
T =0 [ g ot an (3.36)
and furthermore, for ¢ > 2 the integral
R = ng |k* o (1K) d ke (3.37)

is convergent. With (3.36), (3.37), and (3.33) we see that we need to utilize the super-
diffusive scaling where p* = 8¢, i.e.

p(8) =02 2<e<4 (3.38)
to renormalize this divergence. Since 62/p? = & 20 as § >0, as in §2¢, the effects of
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‘bare diffusion’ with coefficient k are negligible in this régime and from (3.33), we see
that with these rescalings the equation for eddy diffusivity for 7 is

AT /ot = LR 2T /0y2, T,y = Th(x, ). (3.39)

As we discussed earlier below (3.17), these special velocity statistics correspond to
the values of (¢, z) with z = 0 in the phase diagram from figure 1 and table 1. The time
rescaling functions p(d) from (3.35) and (3.38) correspond exactly to those in the
general theory listed in table 1 for z = 0 with a phase transition at ¢ = 2 from normal
diffusion to super-diffusion. Furthermore, the effective equations in (3.35) and (3.39)
for T'in these régimes have the same form as listed in table 1 for regions I and IT with
z = 0. Thus, the theory for eddy diffusivity which we have just presented in detail for
these limiting velocity statistics both illustrates and reproduces the general theory
of renormalized eddy diffusivity for (3.1) in an instructive limiting case with z = 0.

We remark that unlike the renormalized theory presented in §2¢ and discussed
below (2.38), the effective equation for 7' in (3.39) for 2 < € < 4 is not scale invariant
under the space-time symmetry group

(, 1) > (Az, \4~¢1) (3.40)

associated with the renormalized time rescaling law in (3.38). The intuitive reason for
this is that the large-scale long-time ensemble average 7' evolves through velocities
which contain the most energy. In the region with infrared divergence for ¢ > 2, these
large energy velocity components are concentrated at the largest spatial scales and
the renormalized diffusivity R* from (3.37) depends upon the infrared cut-off y,(|k|)
reflecting the most energetic part of the velocity spectrum. In this fashion, the scale
invariance associated with (3.40) is broken. On the other hand, in (2.35) from §2¢,
there is no dependence of diffusivity on an infrared cut-off, and scale invariance as
in (2.40) is satisfied. It is worth remarking here that the effective equations for 7" are
scale invariant under the appropriate space-time symmetry group for regions I, IV,
and V for the eddy diffusivity theory in figure 1 and table 1 but in regions IT and 11T,
the equations for 7' depend on the infrared cut-off as illustrated in the special case
above and are not scale invariant. However, more complicated higher-order statistics
such as the pair-distance function remain scale invariant under the appropriate
space-time symmetry group in all regions unlike the mean statistics involving 7'
which we discussed here. The above facts are discussed in a recent paper of the
authors (Avellaneda & Majda 1992a, §5).

The models in (3.1) are anisotropic. Thus in these models, it is natural to consider
the possible anisotropic scaling laws

' =g8)w, y =0y, t=p*)t (3.41)
with ¢(d) =0 as § 0 so that the limit

T . % t -1

oyt = im (7(.35 5. ) 0400 (342
exists and 7T satisfies a non-trivial effective equation (Zhang & Glimm 1992). As in
remark §2b (i), the amplitude scaling function A(d) is needed for general initial data
which do not necessarily involve only the large scales, for large-scale initial data
h(d) = 1. We illustrate and discuss these effects of anisotropic scaling on 7' for the
special velocity fields with statistics in (3.17).

SIS
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Examples for turbulent transport 2217

For general initial data 7)(«, y), by following (3.30)—(3.34) with minor changes, we
obtain

r_oY ¢ = 2ni(zy+yé)
<T( ()"0 p*(o )> %0 H
cexp| = et (L 4 B g S oyt g0y s ane. 349
For simplicity in exposition, we assume that [[ 7)(x,y) = C; # 0 so that
lim 7)(9(8) 9, 88) = Cy # 0 (3.44)
-0

and then we utilize the obvious choice 4(8) = dg(8) in (3.42). In the mean field régime,
— 00 < € < 2, the rescaled limit in (3.42) is non-trivial if and only if

pd) =06 and g6 =0 6=1

When 6 = 1, T is a constant multiple of the Green’s function for (3.34). On the other
hand for 6 > 1, T' satisfies the equation

T/t = (k+3R) 2T /0y?, T,y = C,y () 8(y). (3.45)

In the régime with renormalization, 2 < ¢ <4, with the formula in (3.43) the
rescaled limit in (3.42) is non-trivial if and only if

p(8) =072, g(8) =0, 6>=2—le (3.46)

For 6 > 2—1¢, T is a multiple of the Green’s function for the isotropic renormalized
equation for eddy diffusivity in (3.39). On the other hand, with the special
anisotropic scaling 8 = 2—1e¢ so that p(8) = ¢(d), from (3.43) the effective equation for
T is given by
oT P o 00T
W T

Tlieg = Cy8(2) 8(y) (3.47)

with R given in (3.37) for 2 < ¢ < 4. Zhang and Glimm emphasize the special choice
of anisotropic scalings g(8) = p(d) in their work and repeat the authors’ calculations
for (3.1) in the isotropic case, g(d) = & described earlier (Avellaneda & Majda 1990a,
1992a). The authors are genuinely puzzled by the claims in that work (Zhang &
Glimm 1992) that the inertial range is studied by such trivial modifications of the
large-scale behaviour of the mean statistical quantities, 7. It is well-known and
standard in the turbulence community (Lesieur 1990 ; McComb 1990) that the scaling
properties of the inertial range are determined by second-order statistics and not
only those involving mean quantities such as 7. Such higher-order statistics are
addressed next in §3¢ and at large scales in recent work of the authors (Avellaneda
& Majda 1992a).

(¢) Second-order statistics and the pair distance equation

Here we study the behaviour of the second-order statistics, {7'(x,y,t) T(%,7,t)) in
the simplified model from (3.1). In general, the scaling behaviour of the second-order
correlations at high Reynolds numbers in appropriate régimes is directly related to
the scaling laws for the inertial range in turbulent transport (Lesieur 1990, ch. 8).
When diffusion is neglected so that « = 0, it is well-known (Lesieur 1990, p. 233) that
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this second-order statistical quantity is essentially the pair distance function. In this
section, we discuss the behaviour of the second-order correlations at arbitrary scales
and not only in the large-scale limit as we have done previously (Avellaneda & Majda
1992aq, §5).

For simplicity in exposition we consider real-valued stationary mean zero gaussian
random initial data for (3.1) which is z independent, i.e.

Ty(y) = femy'é'fz,@ dw(g), (3.48)

where dW(£) is gaussian white noise with (dW(£) dW(£)) = 8(E+&) dE and T)(—&) =
T(). We utilize Kac’s formula from §30(i) as illustrated above in (3.28), (3.29) to give
a representation formula for the second-order statistics for (3.1) involving function
space integrals. Then we discuss the properties of these higher-order statistics which
can be understood through these formulas. In our calculations below, we assume
initially only that the velocity field is mean zero and gaussian with correlation
function given in (3.11). Later we will specialize to the velocity statistics in the
limiting case in (3.17).

By using Kac’s formula and similar but more lengthy calculations as in (3.28),
(3.29) we obtain the representation formula for the second-order statistics of the
solution with the initial data in (3.48)

Ty, )T+, y+y', b))
= fe?“iy€|ﬂ<£>|2e-m“?‘ By, p,[exp (—4m*EW (B, fo.x. 1) dE. (3.49)

Here the function W(f,, f,,x,t) is defined through the recipe
exp (—4m2E2W (B, By, %, 1))

<exp[ 2n1§J1[v 2K): B, (s) — (x4 (2K): fy(5) t—-s)]ds]>. (3.50)

In (3.49), £; ,["] denotes the expected value over independent brownian paths f,,
f, with respect to the product Wiener measure (Avellaneda & Ma]da 1990a, §6,
1992a, §5). As a consequence of the special choice of initial data in (3.48), the
quantity

KTy ) Te+a,y+y',t)) = Pla,y,t) (3.51)

is stationary and essentially the pair-distance function when k = 0. Of course in
(3.49) and (3.51), the average () denotes ensemble average over both the velocity
statistics and the random initial data. The right-hand side of (3.50) determines
W(B1, By, 2, t) in the form specified in (3.50) as a consequence of our assumption of
gaussian statistics for the velocity field as utilized earlier in (3.29) and (2.5) in §2.
In fact, through these formulas we have

Wiy fovat) ——JJ[R 2004 (8, (5) — Ao ). (5= )+ RU6 (By(s) = Byl D). 5= )
—R(x+ (2¢)3 ( )2 (By(8) = B1(8')), (s— &) — R(— a4 (2)% (B, (5) — By(5")), s— ') ds ds’
(3.52)

with R(x,t) = {v(x,t),v(0,0)) the velocity correlation function from (3.11).
Phil. Trans. R. Soc. Lond. A (1994)
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(i) The pair distance equation with k =0

If we neglect the diffusion in (3.1) and look at the motion of a passively transported
quantity without diffusion, i.e. k = 0 or Pr = 4 00, the general formulas in (3.49) and
(3.52) simplify dramatically. With « = 0 in (3.52) we have

W(0,0,x,t) = %f {(w(x,8)—v(0,8))?) dsds’ (3.53)
0J0

so that from (3.49) we obtain that the second order correlations P(z,y,t) satisfy the
local diffusion equation

P /ot = D y(t,2) P JOy%, Pliy = <Tyy) Ty(0)) (3.54)

with non-negative diffusion coefficient Z.(¢, x) given by
¢
Dty ) = f {(v(x,5)—(0,0))*) ds. (3.55)
0

For the special case of velocity statistics which are gaussian white noise in time,
we calculate that
D y(x) = i (v(x,0) —2(0,0))*). (3.56)

With the velocity statistics in (3.17) in the ‘high Reynolds number limit’, i.e. as
0—0, we have the formula

{(v(x, 0)—25(0,0))%) = 2sz (1—cos (kx)) |k]* ", (|k]) dke (3.57)
and the integral converges for all ¢ with —o0 < e < 4. We recall that the model in
(3.1) has ‘non-dimensionalization’ motivated by utilizing the dissipation length scale
in fully developed turbulence in (3.3), (3.4) so that bounded x corresponds to
dissipation lengths while - co corresponds to the ‘inertial range’ in the model for
fixed ¢ and z. We claim that the diffusion coefficients 2% (x) behave in a completely
different and discontinuous fashion on the two sides of the phase transition boundary
where ¢ = 2 for the special statistics in (3.17).

For e < 2, |k|*"“r,(|%]) is integrable so by the Riemann—-Lebesgue lemma

J cos (kx) |k|* ¢ (k) dk -0 as |z|—> o0

—o0
and D (x) >R for x| o0. (3.58)
We see that this diffusion coefficient for pair dispersion for large x is twice the large-
scale diffusion coefficient computed in (3.34), and particles are asymptotically
independent for « in the ‘inertial range’ for ¢ < 2.

In contrast, pairs of particles are strongly correlated in the inertial range for
€ > 2. By rescaling (3.57), we obtain that

P(@) = [el=2C, + of|af~?) (3.59)
for |x| - 0o with

C = VZJ (1—cos (k) k'cdk, 2<e<4. (3.60)
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Clearly, the constant C, is finite only for 2 < ¢ < 4. Thus the pair-diffusion coefficient
P (x) grows like |x|"? as a result of the strong correlations in the inertial range for
€ > 2 but approaches a constant for ¢ < 2.

This discontinuous behaviour of the coefficients for pair dispersion across phase
transition boundaries which we have just illustrated is typical of the behaviour of
pair-distance functions renormalized at large scales and long times for the model in
(3.1) with « # 0 across the general phase transition boundaries given in figure 1
(Avellaneda & Majda 1992a, §5). In particular (3.54)—(3.60) recover this large-scale
limiting behaviour for z = 0 and ¢ varying. It should be clear to the reader that all
of the ideas which we have just presented in the special limiting case apply with
suitable modification to the more statistics in (3.14). For the model in (3.1) involving
simple shear layers, the eulerian and lagrangian velocity correlation functions
coincide and the general formula for W(0, 0, z, {) in (3.53) is the familiar expression for
pair-dispersion of particles initially separated by a distance z through their
lagrangian velocity correlations (McComb 1990; Lesieur 1990).

(ii) The pair distance equation with k # 0 and white noise velocity statistics in time

We investigate briefly the second-order correlations in (3.49) with finite diffusion,
k # 0, for the special velocity statistics with the form in (3.17). With (3.17) we
calculate from (3.52) that W(B,, f,, x,t) is given by the simpler formula

W(By, By, 2, t) = J[R R (x4 (2K) (By(s)— B1(s)))] ds. (3.61)

Thus if we introduce the ‘rotated’ brownian motion f = J5(f,—f;), we obtain the
identity

Eﬁl,ﬁz[exp ( —4n2£2W(/7’1, /327 Z, t)]

=Eﬁ{exp[—2n2£2f [R(O)——R(x+2/<%,6’( 5))] d ]} o(@, &, 8)  (3.62)
0

for the special velocity statistics in (3.17).
We recognize the second formula in (3.62) as Kac’s formula (Kac 1950) for an
appropriate real potential. To see this we define a potential V(x) by

V(x) = 2n2ER(0)— R(x)]. (3.63)

Then by the Feynman-Kac formula (McKean 1969) P,(x, £, 1) from (3.62) satisfies
the differential equation,

a130(‘%.9 g? t) — a2

o = 25 Pl ) = 2mE(R(0) — R(x)] . £.1),

130(95» E)mg=1.
With (3.49) and (3.64), we recognize that the second-order correlations
Ty ) T+a, y+y',t)) = Px,y,t)
solve the local diffusion equation,
P /ot = 2k AP +3[R(0)— R(x)]0*P/dy?, Pl,_y = {T\(y) T;(0)>. (3.65)

It is worth emphasizing here that the differential equation which we just derived for
the second-order correlations is exact without any approximations for the special

(3.64)
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Examples for turbulent transport 231

velocity statistics in (3.17). The white noise statistics in time yield markovian
behaviour for the second-order statistics at all scales; in general there are non-
markovian effects in the formulas for the second-order statistics in (3.49) and
markovian behaviour is recovered only at suitable large scales and long times
(Avellaneda & Majda 1992a, §5).

In the high Reynolds number limit, i.e. §—0 for fixed values of the Prandtl
number, the equation for P in (3.65) becomes

OP /0t = 2k AP+ D (x) P [Oy*,  Pli—y = {Ty(y) T(0)) (3.66)

with Z¢(x) calculated earlier in (3.56) and (3.57). As in (3.58)—(3.60), the behaviour
of solutions of the differential equation in (3.66) is completely different as the
parameter ¢ crosses the phase transition boundary from e < 2 to € > 2. To see this we
look at the related problem from (3.64) for P(x,£,t) given by

P * 5 242 272 0p¢ 5]

i QKG_sz(x’ £, ) — (B2 +4n2E2 D5 () P(x, £, 1). (3.67)
The right-hand side of (3.67) is essentially a self-adjoint Schrodinger operator with
a repulsive potential defined by Z¢ (). For e with ¢ < 2, from (3.58) we see that 75 (x)
approaches a constant for large x and this Schrodinger operator has a standard
continuous spectrum which involves small perturbations of the free space
Schrodinger operator shifted by a constant. In this régime with ¢ < 2 the behaviour
for (3.66) at large distances is well approximated by a gaussian profile shape. In
contrast, for 2 < ¢ < 4, it follows from (3.59) and (3.60) that the repulsive potential
Z: (x) satisfies

Di(x)—>00 as |x|—o0.

In this case, it is well known (Titchmarsh 1946) that the Schrédinger operator in
(3.67) has only pure point spectrum (like the harmonic oscillator) with localized
proper eigenfunctions and no continuous spectrum. Thus, the function P(x,§,¢) is
expanded in terms of the complete orthonormal basis consisting of the eigenfunctions
for (3.67). Clearly for € with 2 < € < 4, solutions of the diffusion operator in (3.67) are
not well approximated by a simple gaussian profile shape at large distances. Of
course, in the limit x — 0 the equation in (3.66) reduces to the pair-distance equation
discussed in (3.54)—(3.60).

In recent work, one of the authors (Majda 1993b) has been studying the complete
dynamic renormalization group involving all higher-order correlation functions for
the inertial range in the model from (3.1) with the statistics in (3.17). The explicit
renormalized statistical fixed point for the inertial range also demonstrates an
explicit and rigorous link between intermediate asymptotics (Barenblatt 1979) and
statistical renormalization in the simplest models for turbulence. Other aspects of
these models have been used recently (Majda 1993a; Fefferman & Majda 1994) to
demonstrate the large-scale intermittency that occurs through broader than gaussian
probability distributions in turbulent diffusion. The interested reader can find
many references to recent experimental and numerical work on these issues in the
bibliography of Majda (1993 a).

We thank V. Yakhot for suggesting that we look at the simplified model in (3.1) with velocity
statistics that are white noise in time. M. A. is partly supported by grants NSF-DMS-9005799,
ARO-DAAL03-92-G0011 and AFOSR 90-0090. A.M. is partly supported by grants NSF-DMS-
9001805, ARO-DAALO03-92-G0010 and ONR N00014-89-J-1044.P00003.
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